
PpR

Stabl.Fi Rebase

Smart Contract Audit

Stabl.Fi Rebase Smart Contract Audit

1

EXECUTIVE SUMMARY

LedgerOps was engaged by the Stabl.Fi team to perform a source code audit of
their rebasing smart contracts.

These findings are based on commit:
5fe1aca8e33644d33ecdcd537264057e53383a92 in the GitHub repository shared
with us (https://github.com/StablFi/stabl-contracts-audit).

At a high level, the CASH and Vault smart contracts enable Stabl.Fi to allow users to
invest stablecoins into a token that automatically generates yield and distributes it
back to the users through six primary contracts:

▪ VaultAdmin.sol – Contains functionality regarding the administration of the
Vault.

▪ VaultCore.sol – Contains the core minting, investing, and redeeming
functions of the Vault.

▪ CASH.sol – The ERC-20 compatible native token of Stabl.Fi that automatically
distributes yield back to holders.

▪ Harvester.sol – Responsible for harvesting yield from each strategy,
collecting fees, and distributing the yield to the Dripper.

▪ Dripper.sol – Distributes yield to the Vault smoothly (time-averaged fashion).

LedgerOps has identified two (2) high severity findings, two (2) findings of moderate
severity, three (3) findings of low severity, and five (5) informational findings.

Amongst the high severity findings, a common theme was present – issues related
to merging existing code with new operating paradigms and security objectives.
LedgerOps identified several key scenarios where the key functionality was
changed and resulted in unexpected situations:

▪ Changed expected invocation of a function would have broken key
functionality.

▪ New yield strategies could potentially enable an economic attack.

The moderate findings include an apparent departure from expected functionality
and a centralization risk due to new capabilities added to the Strategist role.
LedgerOps also encountered several low or informational findings due to the
nascent development of the platform. LedgerOps encourages Stabl.Fi to implement

https://github.com/StablFi/stabl-contracts-audit

Stabl.Fi Rebase Smart Contract Audit

2

thorough testing on all modified features and conduct security testing against the
rest of the platform, as the scope of this engagement was limited to changes in the
core functionality of the Vault, yield harvesting, and native token.

LedgerOps greatly appreciates the opportunity to work with the Stabl.Fi
development team and looks forward to supporting the team throughout the entire
Software Development Life Cycle. The team was very responsive and proactive in
answering any questions from the security testers and changing instances of
discovered issues.

The discovered issues are highlighted below along with their respective severity:

Finding Name Finding Severity Status

harvestAndDistribute onlyGovernor
Modifier Breaks Payout Functionality

High Remediated

Potential Economic Attack
Vulnerabilities

High Remediated

Payout Function Does Not Pay
msg.sender

Medium Remediated

Strategist Role Poses a Potential
Centralization Risk

Medium Remediated

OGN Buyback Functionality Included in
Allocate

Low Remediated

redeemFee Calculation Does Not Check
redeemFeeBps

Low Remediated

Stabl.Fi Rebase Smart Contract Audit

3

Code Sanitization: Unneeded Code from
Predecessors Should Be Removed;

Additional Documentation and Testing
Specific to CASH/Stabl Should Be Added

Low In Progress

Redemption Calculation Unevenly
Redeems from Strategies Earliest in

Array

Informational Risk Accepted

Lab and Team Fees Distributed on Both
Payout and Redeem

Informational Remediated

_calculateRedeemOutput() Contains
Unnecessary Calculations

Informational Risk Accepted

VaultAdmin._balance() Shadows a
Storage Variable Name

Informational Remediated

Function justMint Should be Removed
from VaultCore

Informational Remediated

Stabl.Fi Rebase Smart Contract Audit

4

CONTENTS
Stabl.Fi Rebase ... 0

Smart Contract Audit .. 0

EXECUTIVE SUMMARY .. 1

CONTENTS .. 4

METHODOLOGY ... 5

SUMMARY OF FINDINGS .. 5

harvestAndDistribute onlyGovernor Modifier Breaks Payout Functionality 7

Potential Economic Attack Vulnerabilities ... 9

Payout function Does Not Pay msg.sender ... 15

Strategist Role Poses Potential Centralization Risk ... 17

OGN Buyback Functionality Included In Allocate ... 20

redeemFee Calculation Does Not Check redeemFeeBps .. 21

Failure To Sanitize Code .. 23

Redemption Calculation Unevenly Redeems From Strategies Earliest In Array 25

Lab And Team Fees Distributed on Both Payout and Redeem 27

_calculateRedeemOutput() Contains Unnecessary Calculations 29

Function justMint should be removed from VaultCore .. 31

VaultAdmin._balance() Shadows A Storage Variable Name .. 32

file://///Users/Mohsan/Public/Ledger/stablfi/LedgerOps_StablFi_Rebase_Auditv8.docx%23_Toc113014433
file://///Users/Mohsan/Public/Ledger/stablfi/LedgerOps_StablFi_Rebase_Auditv8.docx%23_Toc113014434

Stabl.Fi Rebase Smart Contract Audit

5

METHODOLOGY

LedgerOps uses proprietary tools and testing practices combining manual and
automated capabilities to develop a tailored, accurate, and highly optimized
process. Our methodology helps uncover logic, implementation, and structural
flaws that do not follow the industry’s best practices. Our wide variety of testing
includes dynamic analysis, static analysis, governance review, economic risks, and
line-by-line code review.

Our team consists of some of the best security researchers in the industry.
LedgerOps aims to provide continuous, qualitative results. Secure development
practices and auditing engagements have proved critical as projects introduce new
functionalities into their ecosystem. Our mission is to make the Web3 ecosystem a
safer place and challenge the entire Web3 security industry to do the same.

SUMMARY OF FINDINGS

Vulnerabilities
High Medium Low Informational

2 2 3 5

Vulnerability Details
Title Type Severity

1 harvestAndDistribute onlyGovernor
Modifier Breaks Payout

Functionality

Authorization
Controls

High

2 Potential Economic Attack
Vulnerabilities

Economic Attack High

Stabl.Fi Rebase Smart Contract Audit

6

3 Payout Function Does Not Pay
msg.sender

Code Completeness Medium

4 Strategist Role Poses a Potential
Centralization Risk

Centralization Risk Medium

5 OGN Buyback Functionality Included
in Allocate

Deprecated
Functionality

Low

6 redeemFee Calculation Does Not
Check redeemFeeBps

Improper Validation Low

7 Code Sanitization: Unneeded Code
from Predecessors Should Be

Removed; Additional
Documentation and Testing Should

Be Added

Code Completeness Low

8 Redemption Calculation Unevenly
Redeems from Strategies Earliest in

Array

Code Style Informational

9 Lab and Team Fees Distributed on
Both Payout and Redeem

Code Completeness Informational

10 _calculateRedeemOutput() Contains
Unnecessary Calculations

Resource
Conservation

Informational

11 VaultAdmin._balance() Shadows a
Storage Variable Name

Code Style Informational

12 Function justMint Should be
Removed from VaultCore

Active Debug Code Informational

Stabl.Fi Rebase Smart Contract Audit

7

harvestAndDistribute onlyGovernor
Modifier Breaks Payout Functionality
Severity Level of Effort Type

High Low Authorization Controls

Issue Description

harvestAndDistribute has the modifier onlyGovernor, but the Vault's _payout
function is currently designed to call harvestAndDistribute.

Impact

The Governor address will have to call harvestAndDistribute directly on a regular
basis; payout functionality is broken for all other users.

Issue Remediation

Change the modifier to onlyVaultOrGovernor.

Supporting Evidence

Location: contracts/harvest/Harvester.sol:Harvestor.sol:144

Stable.Fi Remediation

Stabl.Fi Rebase Smart Contract Audit

8

Modifier changed to onlyVaultOrGovernor

References

▪ N/A

Stabl.Fi Rebase Smart Contract Audit

9

Potential Economic Attack Vulnerabilities
Severity Level of Effort Type

High Moderate Economic Attack

Issue Description

If any of the strategies’ value calculations can be externally influenced and changed
within a block, an economic attack could be leveraged to extract funds from the
Vault.

The root of this issue is that the Vault’s total balance is calculated by immediately
requesting the value of each of the strategies at a single point in time, which could
change throughout a transaction (or block). The value calculation of a strategy may
include using a price oracle to calculate the value of assets within the strategy. If the
price oracles used can be manipulated to return different values during a
transaction or block, the appearance of profit could enable an economic attack
where the Vault's calculations show that the value has gone up, but the assets have
not been liquidated, and the profit has not yet been realized.

Though a complete audit of the strategies used was not in scope, it appears that
some strategies' checkBalance functions external functionality to calculate the
prices of related assets. Suppose any strategy's checkBalance functionality can be
manipulated by an attacker within a transaction or block (such as by borrowing a
tremendous amount from a liquidity pool using flash loans). In that case, it is a
serious threat as it could allow an attacker to manipulate the Vault's perception of
value and extract funds. An attack of this nature was conducted against a similar
system and is documented at the following link:
https://medium.com/harvest-finance/harvest-flashloan-economic-attack-post-
mortem-3cf900d65217

Impact

If an attacker can manipulate the price of a strategy within a transaction. In that
case, they could mint a large amount of CASH, then begin price manipulation,
trigger a rebase to cause a distribution of fake profit, and finally redeem their initial
deposit plus their percentage of the fake profit. The result is a transfer of stablecoin
to the attacker, and since the value of CASH cannot be lowered by a rebase, the

https://medium.com/harvest-finance/harvest-flashloan-economic-attack-post-mortem-3cf900d65217
https://medium.com/harvest-finance/harvest-flashloan-economic-attack-post-mortem-3cf900d65217

Stabl.Fi Rebase Smart Contract Audit

10

ratio of stablecoin backing to CASH will be affected. The amount an attacker can
redeem is limited by the maxSupplyDiff check in VaultCore._redeem, but this is not
fully effective since the backing value and cash supply both include the attacker’s
deposit. Additionally, attackers could repeat this attack multiple times.

Supporting Evidence

VaultCore._checkBalance and checkBalance of all strategies

Issue Remediation

Examine all strategies' checkBalance functions and ensure that an attacker cannot
manipulate the price oracles and value calculations to change within a single block.
If enforcing this requirement on strategies is not possible, a vault redesign should
be considered similar to the mitigation strategies discussed in the Harvest Finance
post-mortem reference linked below. It is imperative to consider that attackers
could bundle multiple transactions using FlashBots. In the future (post Merge),
scenarios may arise that enable attacks that span across two or three contiguous
blocks.

Stabl.Fi Rebase Smart Contract Audit

11

Stable.Fi Remediation

Figure 1: Am3CurveStrategy

Figure 2: DodoStrategy

Stabl.Fi Rebase Smart Contract Audit

12

Figure 3: DystopiaStrategy

Figure 4: MeshSwapStrategy

Stabl.Fi Rebase Smart Contract Audit

13

Figure 5: MeshSwapStrategyDual

Figure 6: QuickSwapStrategy

Stabl.Fi Rebase Smart Contract Audit

14

Figure 7: SynapseStrategy

References
▪ https://medium.com/harvest-finance/harvest-flashloan-economic-attack-

post-mortem-3cf900d65217
▪ https://samczsun.com/so-you-want-to-use-a-price-oracle/

https://medium.com/harvest-finance/harvest-flashloan-economic-attack-post-mortem-3cf900d65217
https://medium.com/harvest-finance/harvest-flashloan-economic-attack-post-mortem-3cf900d65217
https://samczsun.com/so-you-want-to-use-a-price-oracle/

Stabl.Fi Rebase Smart Contract Audit

15

Payout function Does Not Pay msg.sender
Severity Level of Effort Type

Medium Low Code Completeness

Issue Description

The VaultAdmin.payout() appears designed to replace the functionality of
Harvester.harvestAndSwap(), but no payment is sent to msg.sender, which means
there is no incentive for users to trigger the harvest functionality.

Impact

The OUSD docs describe an incentivized harvest structure where the user that calls
harvestAndSwap gets 1% of the proceeds, thus creating an incentive to trigger
harvests. Without such an incentive, the system will require continual interaction
and expenditure from the Governor or other invested stakeholders to trigger
harvests, which could decrease user interest.

Supporting Evidence

VaultAdmin.sol:521-528

Issue Remediation

Stabl.Fi Rebase Smart Contract Audit

16

Calculate and transfer a percentage of the harvest to msg.sender in _payout by
having harvestAndDistribute() return the amount distributed to the vault.

Stable.Fi Remediation

Team Response: Decided to keep this design and call the function as needed using
Gelato or a similar construct.

References
▪ https://github.com/OriginProtocol/origin-

dollar/blob/f0a2ce23663d32a8734d8f90b8f903ff66402961/contracts/contrac
ts/harvest/Harvester.sol#L259

https://github.com/OriginProtocol/origin-dollar/blob/f0a2ce23663d32a8734d8f90b8f903ff66402961/contracts/contracts/harvest/Harvester.sol#L259
https://github.com/OriginProtocol/origin-dollar/blob/f0a2ce23663d32a8734d8f90b8f903ff66402961/contracts/contracts/harvest/Harvester.sol#L259
https://github.com/OriginProtocol/origin-dollar/blob/f0a2ce23663d32a8734d8f90b8f903ff66402961/contracts/contracts/harvest/Harvester.sol#L259

Stabl.Fi Rebase Smart Contract Audit

17

Strategist Role Poses Potential
Centralization Risk
Severity Level of Effort Type

Medium Low Centralization Risk

Issue Description

The strategist role in OUSD exists to allow low-touch maintenance and enable
faster disaster-recovery actions, but it also lowers the bar for an attacker to be able
to compromise a protocol’s governance and be able to access administrative
functionality. In the case of the Strategist role, several functions would allow an
attacker to effectively compromise the system if they can compromise the
Strategist role.

Impact

A compromised Strategist could completely disrupt the system or steal all of the
funds, depending on the function.

• VaultAdmin.setStrategyWithWeights: the storage variable strategyWithWeight
is set without checking input addresses are in allStrategies and
strategies[addr].isSupported is true. When combined with the ability to call
VaultAdmin.balance() which is also marked onlyGovernorOrStrategist, a
compromised Strategist could transfer all holdings to an arbitrary address

• VaultAdmin.setQuickDepositStrategies: the storage variable

quickDepositStrategies is set with a list of unchecked addresses, which will be
the default recipients for all future assets deposited via mint and distributed
by _quickAllocate , which does not check that the addresses in
quickDepositStrategies have been approved.

• VaultAdmin.setSwapper: this sets addresses that are used by strategies for

asset swaps and will be used to convert all assets deposited via
VaultCore.mint by way of VaultCore._swapAsset().

• VaultAdmin.setPrimaryStable: this changes the primary asset used for vault

valuation and is a linchpin variable.

Stabl.Fi Rebase Smart Contract Audit

18

Supporting Evidence

VaultAdmin.sol: setStrategyWithWeights, setQuickDepositStrategies, setSwapper,
setPrimaryStable

Issue Remediation

Use the onlyGovernor modifier for the functions listed above and check that all
incoming strategy addresses have been approved before assigning them to a
storage variable.

Stabl.Fi Rebase Smart Contract Audit

19

Stable.Fi Remediation

Team Response: The recommended fixes have been implemented.

References

▪ https://halborn.com/how-centralization-enables-smart-contract-hacks-and-
scams/

https://halborn.com/how-centralization-enables-smart-contract-hacks-and-scams/
https://halborn.com/how-centralization-enables-smart-contract-hacks-and-scams/

Stabl.Fi Rebase Smart Contract Audit

20

OGN Buyback Functionality Included In
Allocate
Severity Level of Effort Type

Low Low Deprecated
Functionality

Issue Description

If trusteeAddress is non-zero, IBuyback(trusteeAddress).swap() is called. With the
Buyback functionality deprecated this would attempt to transfer execution to an
undetermined function on the trusteeAddress. While only the Governor can set the
trusteeAddress, this code is reachable via the external allocate() function and could
be triggered by any Ethereum user.

Impact

If the trustee is set, this will most likely just cause a revert, but the worst case is an
unexpected external function call on the trustee's address. No impact if the trustee
is not set.

Supporting Evidence

Contracts/vault/VaultCore.sol:VaultCore:_allocate:341-345

Issue Remediation

Remove the code related to Buyback functionality in _allocate()

Stable.Fi Remediation

Stabl.Fi Rebase Smart Contract Audit

21

Team Response: Implemented recommended fix and removed the code.

redeemFee Calculation Does Not Check
redeemFeeBps
Severity Level of Effort Vulnerability Type

Low Low Improper Validation

Issue Description

The conditional gating of the redeemFee calculation checks labsFeeBps and
teamFeeBps but not redeemFeeBps.

Impact

If redeemFeeBps is 0 or both labFeeBps and teamFeeBps are 0, the redeemFee
returned will be 0, which will later cause a revert in _distributeFees, breaking
redeem functionality for all users. In the expected case where all fees are nonzero,
the only impact is gas spent on unnecessary operations.

Supporting Evidence

contracts/vault/VaultCore.sol:VaultCore:_calculateRedeemOutput:539-543

Issue Remediation

Use if(redeemFeeBps > 0) in _calculateRedeemOutput and check lab and team basis
point factors in _distributeFees.

Stabl.Fi Rebase Smart Contract Audit

22

Stable.Fi Remediation

References

▪ N/A

Stabl.Fi Rebase Smart Contract Audit

23

Failure To Sanitize Code
Severity Level of Effort Type

Low Moderate Code Completeness

Issue Description

There are outdated files and functions throughout the codebase that will add size
and may potentially confuse new developers (for example,
VaultCore._getAssetPrices() is never used, and it is unclear whether the previous
VaultCore.allocate() function is still desired). The project currently lacks
documentation of its own and the testing is largely inherited. This is an artifact of
the newness of the codebase but should not be overlooked as the project matures.

Impact

Code that is deprecated, unnecessary, or unused will likely cost developers time to
read and users or deployers gas to deploy and use. In the worst case, an
unexpected interaction could occur; while none were observed, future changes
could introduce an unwanted interaction with legacy code.

Supporting Evidence

contracts/vault/VaultCore.sol:VaultCore._getAssetPrices()

The following snippet is one example of dead code that should be removed:

Stabl.Fi Rebase Smart Contract Audit

24

Issue Remediation

Remove unnecessary code. Update documentation and tests; rigorous testing of
any new or modified code is essential. We recommend unit tests, dynamic testing
such as fuzzing, and static analysis whenever possible.

Stable.Fi Remediation

Team Response: Specifically named functions were removed, but the team
acknowledged that the codebase was not yet thoroughly cleaned up for release.

References

▪ N/A

Stabl.Fi Rebase Smart Contract Audit

25

Redemption Calculation Unevenly
Redeems From Strategies Earliest In Array
Severity Level of Effort Type

Informational Low Code Style

Issue Description

Redemption opportunistically withdraws from the strategyWithWeights array,
withdrawing all from the first strategy if possible, and continuing until redemption
output is sufficient.

Impact

Strategies early in the array will be unevenly redeemed against.

Supporting Evidence

contracts/vault/VaultCore.sol:VaultCore:_redeem:184-202

Issue Remediation

Randomize the order the array is visited in or use a deliberate strategy to choose
which strategy to redeem from, such as choosing the strategy with the highest

Stabl.Fi Rebase Smart Contract Audit

26

balance. Assuming at least one rebalance has occurred and the strategies have
been sorted by weight, the first strategy in the array will be the one with the lowest
weight.

Stable.Fi Remediation

Team Response: Keeping the design as-is.

References

▪ N/A

Stabl.Fi Rebase Smart Contract Audit

27

Lab And Team Fees Distributed on Both
Payout and Redeem
Severity Level of Effort Type

Informational Low Code Completeness

Issue Description

Fees are collected on harvest (via VaultAdmin.payout()) and on redeem, whereas
OUSD only takes fees on redemption. Additionally, the intent of the calculations in
VaultCore._distributeFees is unclear; for example, they reference a static 10% which
is not fully explained.

Impact

The calculation of fees may not match the intent.

Supporting Evidence

Harvester.sol:_distribute -> _distributeFees:158

VaultCore.sol:_redeem -> _distributeFees:229

Harvester.sol:

Stabl.Fi Rebase Smart Contract Audit

28

VaultCore.sol:

Issue Remediation

Add clarifying remarks in comments and overall system specification. Consider
changing the argument name in _distributeFees from _amount to _redeemFee if the
intent is to claim a percentage of the redeem fee.

Stable.Fi Remediation

Team Response: Changed so team fees are distributed only on profits during payout
(Harvester.sol unchanged); the redemption in VaultCore.sol is changed so only the vault
fee will be charged.

Stabl.Fi Rebase Smart Contract Audit

29

References

▪ N/A

_calculateRedeemOutput() Contains
Unnecessary Calculations

Severity Level of Effort Type

Informational Low Resource Conservation

Issue Description

The ratio variable is the result of redundant multiplication and divisions and the
math surrounding definition and use of this variable could be simplified. Since
much of the finance logic is inherited, some additional complexity from OUSD's
multiple currencies is redundant when dealing with only a single primary
stablecoin.

Impact

The math appears correct in this case, but additional complexity hurts readability
and could lead to mistakes; otherwise, the extra computation just costs gas. The
function _calculateRedeemOutput is an example of where math related to the
primary stablecoin could be simplified, but there are likely other places in the
codebase where similar simplification could reduce code complexity and gas costs.

Supporting Evidence

contracts/vault/VaultCore.sol:VaultCore:_calculateRedeemOutput

Stabl.Fi Rebase Smart Contract Audit

30

Issue Remediation

Revisit and simplify calculations related to primary stablecoin wherever possible.

Stable.Fi Remediation

Team Response: Acknowledged.

References

▪ N/A

Stabl.Fi Rebase Smart Contract Audit

31

Function justMint should be removed
from VaultCore
Severity Level of Effort Type

Informational Low Active Debug Code

Issue Description

This appears to be a testing function that was included as a public function in the
core functionality. While the risk of including the function appears low, there is no
apparent reason for an externally-accessible alternative to mint.

Impact

While assets deposited via justMint could be allocated later, having unallocated
funds for any period of time would be missing potential profit. If there is more than
one approved token and the user calls justMint, another user would have to trigger
allocate to get those assets allocated to a strategy. In the case where an asset is
approved but a default allocation strategy is not yet set (which are onlyGovernor
and onlyStategistOrGovernor functions, respectively) allocate will revert. This
means that if a user does justMint with such an approved asset, those assets will
not be able to be allocated until a default strategy is set.

Supporting Evidence

VaultCore.sol:66-72

Stabl.Fi Rebase Smart Contract Audit

32

Issue Remediation

Remove the justMint function.

Stable.Fi Remediation

Team Response: justMint is a test function, will be removed for release.

VaultAdmin._balance() Shadows A Storage
Variable Name

Severity Level of Effort Type

Informational Low Code Style

Issue Description

The VaultAdmin._balance() function contains a local variable named strategies
which shadows a storage variable from VaultStorage.sol:62

Impact

This fails to follow best practices, hurting readability and potentially could cause a
problem in the future.

Supporting Evidence

contracts/vault/VaultAdmin.sol:VaultAdmin.sol:_balance

Stabl.Fi Rebase Smart Contract Audit

33

Issue Remediation

This fails to follow best practices, hurting readability and potentially could cause a
problem in the future

Stable.Fi Remediation

Team Response: Refactored to use variable name stratsWithWeights instead.

References
▪ N/A

	Stabl.Fi Rebase
	Smart Contract Audit
	EXECUTIVE SUMMARY
	CONTENTS
	METHODOLOGY
	SUMMARY OF FINDINGS
	harvestAndDistribute onlyGovernor Modifier Breaks Payout Functionality
	Issue Description
	Impact
	Issue Remediation
	Supporting Evidence
	References

	Potential Economic Attack Vulnerabilities
	Issue Description
	Impact
	Supporting Evidence
	Issue Remediation
	References

	Payout function Does Not Pay msg.sender
	Issue Description
	Impact
	Supporting Evidence
	Issue Remediation
	References

	Strategist Role Poses Potential Centralization Risk
	Issue Description
	Impact
	Supporting Evidence
	Issue Remediation
	References

	OGN Buyback Functionality Included In Allocate
	Issue Description
	Impact
	Supporting Evidence
	Issue Remediation

	redeemFee Calculation Does Not Check redeemFeeBps
	Issue Description
	Impact
	Supporting Evidence
	Issue Remediation
	References

	Failure To Sanitize Code
	Issue Description
	Impact
	Supporting Evidence
	Issue Remediation
	References

	Redemption Calculation Unevenly Redeems From Strategies Earliest In Array
	Issue Description
	Impact
	Supporting Evidence
	Issue Remediation
	References

	Lab And Team Fees Distributed on Both Payout and Redeem
	Issue Description
	Impact
	Supporting Evidence
	Issue Remediation
	References

	_calculateRedeemOutput() Contains Unnecessary Calculations
	Issue Description
	Impact
	Supporting Evidence
	Issue Remediation
	References

	Function justMint should be removed from VaultCore
	Issue Description
	Impact
	Supporting Evidence
	Issue Remediation

	VaultAdmin._balance() Shadows A Storage Variable Name
	Issue Description
	Impact
	Supporting Evidence
	Issue Remediation
	References

